Title: | Symmetric Normalized Quadratic Profit Function |
---|---|
Description: | Tools for econometric production analysis with the Symmetric Normalized Quadratic (SNQ) profit function, e.g. estimation, imposing convexity in prices, and calculating elasticities and shadow prices. |
Authors: | Arne Henningsen |
Maintainer: | Arne Henningsen <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.6-10 |
Built: | 2024-11-03 05:21:40 UTC |
Source: | https://github.com/cran/micEconSNQP |
Returns the predicted values, their standard errors and the confidence limits of prediction for an Symmetric Normalized Quadratic (SNQ) profit function.
## S3 method for class 'snqProfitEst' predict( object, newdata = object$data, se.fit = FALSE, se.pred = FALSE, interval = "none", level = 0.95, useDfSys = TRUE, ... ) ## S3 method for class 'snqProfitImposeConvexity' predict( object, newdata = object$data, se.fit = FALSE, se.pred = FALSE, interval = "none", level = 0.95, useDfSys = TRUE, ... )
## S3 method for class 'snqProfitEst' predict( object, newdata = object$data, se.fit = FALSE, se.pred = FALSE, interval = "none", level = 0.95, useDfSys = TRUE, ... ) ## S3 method for class 'snqProfitImposeConvexity' predict( object, newdata = object$data, se.fit = FALSE, se.pred = FALSE, interval = "none", level = 0.95, useDfSys = TRUE, ... )
object |
an object of type |
newdata |
data frame in which to predict. |
se.fit |
logical. Return the standard error of the fitted values? |
se.pred |
logical. Return the standard error of prediction? |
interval |
Type of interval calculation ("none", "confidence" or "prediction"). |
level |
confidence level. |
useDfSys |
logical. Use the degrees of freedom of the whole system (and not the degrees of freedom of the single equation) to calculate the confidence intervals. |
... |
currently not used. |
The variance of the fitted values
(used to calculate the standard errors of the fitted values
and the "confidence interval") is calculated by
The variances of the predicted values
(used to calculate the standard errors of the predicted values
and the "prediction intervals") is calculated by
predict.snqProfitEst
and predict.snqProfitImposeConvexity
return
a dataframe that
contains the predicted profit and for each netput the predicted quantities
(e.g. "quant1" ) and if requested
the standard errors of the fitted values (e.g. "quant1.se.fit"),
the standard errors of the prediction (e.g. "quant1.se.pred"),
and the lower (e.g. "quant1.lwr") and upper (e.g. "quant1.upr")
limits of the confidence or prediction interval(s).
Arne Henningsen
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Macmillan.
Gujarati, D. N. (1995) Basic Econometrics, Third Edition, McGraw-Hill.
Kmenta, J. (1997) Elements of Econometrics, Second Edition, University of Michigan Publishing.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
snqProfitEst
, snqProfitCalc
and predict
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) predict( estResult ) predict( estResult, se.fit = TRUE, se.pred = TRUE, interval = "confidence" ) }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) predict( estResult ) predict( estResult, se.fit = TRUE, se.pred = TRUE, interval = "confidence" ) }
This function prints a summary estimation results of a symmetric normalized quadraric (SNQ) profit function.
## S3 method for class 'snqProfitEst' print( x, ... )
## S3 method for class 'snqProfitEst' print( x, ... )
x |
an object of class |
... |
arguments passed to |
Arne Henningsen
## Not run: library( systemfit ) if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms ) print( estResult ) }
## Not run: library( systemfit ) if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms ) print( estResult ) }
Extract the residuals from the estimation of a Symmetric Normalized Quadratic (SNQ) profit function.
## S3 method for class 'snqProfitEst' residuals( object, scaled = TRUE, ... ) ## S3 method for class 'snqProfitImposeConvexity' residuals( object, scaled = TRUE, ... )
## S3 method for class 'snqProfitEst' residuals( object, scaled = TRUE, ... ) ## S3 method for class 'snqProfitImposeConvexity' residuals( object, scaled = TRUE, ... )
object |
an object of type |
scaled |
logical. Return scaled quantities? |
... |
currently not used. |
residuals.snqProfitEst
and residuals.snqProfitEst
return a
dataframe that contains the residuals for each netput and the profit.
Arne Henningsen
snqProfitEst
, snqProfitImposeConvexity
and residuals
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) residuals( estResult ) residuals( estResult, scaled = FALSE ) }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) residuals( estResult ) residuals( estResult, scaled = FALSE ) }
Calculation of netput quantities and profit with the Symmetric Normalized Quadratic (SNQ) Profit function.
snqProfitCalc( priceNames, fixNames, data, weights, scalingFactors = rep( 1, length( weights ) ), coef, quantNames = NULL, form = 0 )
snqProfitCalc( priceNames, fixNames, data, weights, scalingFactors = rep( 1, length( weights ) ), coef, quantNames = NULL, form = 0 )
priceNames |
a vector of strings containing the names of netput prices. |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fix inputs. |
data |
a data frame containing the data. |
weights |
vector of weights of the prices for normalization. |
quantNames |
optional vector of strings containing the names of netput quantities. |
scalingFactors |
factors to scale prices (and quantities). |
coef |
a list containing the coefficients alpha, beta, delta and gamma. |
form |
the functional form to be estimated (see |
a data frame: the first n columns are the netput quantities, the last column is the profit.
Arne Henningsen
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
snqProfitEst
and snqProfitWeights
.
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) fixNames <- c( "land", "time" ) estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms ) snqProfitCalc( priceNames, fixNames, estResult$data, estResult$weights, estResult$scalingFactors, estResult$coef ) }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) fixNames <- c( "land", "time" ) estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms ) snqProfitCalc( priceNames, fixNames, estResult$data, estResult$weights, estResult$scalingFactors, estResult$coef ) }
Calculates the Price Elasticities of a Symmetric Normalized Quadratic (SNQ) profit function.
snqProfitEla( beta, prices, quant, weights, scalingFactors = rep( 1, length( weights ) ), coefVcov = NULL, df = NULL )
snqProfitEla( beta, prices, quant, weights, scalingFactors = rep( 1, length( weights ) ), coefVcov = NULL, df = NULL )
beta |
matrix of estimated |
prices |
vector of netput prices at which the elasticities should be calculated. |
quant |
vector of netput quantities at which the elasticities should be calculated. |
weights |
vector of weights of prices used for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
coefVcov |
variance covariance matrix of the coefficients (optional). |
df |
degrees of freedom to calculate P-values of the elasticities (optional). |
a list of class snqProfitEla
containing following elements:
ela |
matrix of the price elasticities. |
vcov |
variance covariance matrix of the price elasticities. |
stEr |
standard errors of the price elasticities. |
tval |
t-values of the price elasticities. |
pval |
P-values of the price elasticities. |
A price elasticity is defined as
Thus, e.g. means that if the price of netput j (
)
increases by 1%, the quantity of netput i (
) will
increase by 0.5%.
Arne Henningsen
# just a stupid simple example snqProfitEla( matrix(101:109,3,3), c(1,1,1), c(1,-1,-1), c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) estResult$ela # price elasticities at mean prices and mean quantities # price elasticities at the last observation (1994/95) snqProfitEla( estResult$coef$beta, estResult$data[ 20, priceNames ], estResult$data[ 20, quantNames ], estResult$weights, estResult$scalingFactors ) }
# just a stupid simple example snqProfitEla( matrix(101:109,3,3), c(1,1,1), c(1,-1,-1), c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) estResult$ela # price elasticities at mean prices and mean quantities # price elasticities at the last observation (1994/95) snqProfitEla( estResult$coef$beta, estResult$data[ 20, priceNames ], estResult$data[ 20, quantNames ], estResult$weights, estResult$scalingFactors ) }
Estimation of a Symmetric Normalized Quadratic (SNQ) Profit function.
snqProfitEst( priceNames, quantNames, fixNames = NULL, instNames = NULL, data, form = 0, base = 1, scalingFactors = NULL, weights = snqProfitWeights( priceNames, quantNames, data, "DW92", base = base ), method = ifelse( is.null( instNames ), "SUR", "3SLS" ), ... )
snqProfitEst( priceNames, quantNames, fixNames = NULL, instNames = NULL, data, form = 0, base = 1, scalingFactors = NULL, weights = snqProfitWeights( priceNames, quantNames, data, "DW92", base = base ), method = ifelse( is.null( instNames ), "SUR", "3SLS" ), ... )
priceNames |
a vector of strings containing the names of netput prices. |
quantNames |
a vector of strings containing the names of netput quantities (inputs must be negative). |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fixed inputs. |
instNames |
an optional vector of strings containing the names of instrumental variables (for 3SLS estimation). |
data |
a data frame containing the data. |
form |
the functional form to be estimated (see details). |
base |
the base period(s) for scaling prices (see details).
If argument |
scalingFactors |
a vector of factors to scale prices (see details). |
weights |
a vector of weights for normalizing prices. |
method |
the estimation method (passed to
|
... |
arguments passed to |
The Symmetric Normalized Quadratic (SNQ) profit function is defined as
follows (this functional form is used if argument form
equals 0):
with = profit,
= netput prices,
= quantities of fixed inputs,
= price index for normalization,
= weights of prices for normalization, and
,
,
and
= coefficients to be estimated.
The netput equations (output supply in input demand) can be obtained
by Hotelling's Lemma ():
In my experience the fit of the model is sometimes not very good,
because the effect of the fixed inputs is forced to be proportional
to the weights for price normalization .
In this cases I use following extended SNQ profit function
(this functional form is used if argument
form
equals 1):
The netput equations are now:
Argument scalingFactors
can be used to scale prices,
e.g. for improving the numerical stability of the estimation
(e.g. if prices are very large or very small numbers)
or for assessing the robustness of the results
when changing the units of measurement.
The prices are multiplied by the scaling factors,
while the quantities are divided my the scaling factors
so that the monetary values of the inputs and outputs
and thus, the profit, remains unchanged.
If argument scalingFactors
is NULL
,
argument base
is used to automatically obtain scaling factors
so that the scaled prices are unity in the base period or - if there
is more than one base period - that the
means of the scaled prices over the base periods are unity.
Argument base
can be either
(a) a single number: the row number of the base prices,
(b) a vector indicating several observations: The means of these
observations are used as base prices,
(c) a logical vector with length equal to the number of rows
of the data set that is specified by argument data
: The
means of the observations indicated as 'TRUE' are used as base prices, or
(d) NULL
: prices are not scaled.
If argument base
is NULL
,
argument weights
must be specified,
because the weights cannot be calculated
if the base period is not specified.
An alternative way to use unscaled prices
is to set argument scalingFactors
equal to a vector of ones
(see examples below).
If the scaling factors are explicitly specified
by argument scalingFactors
,
argument base
is not used for obtaining scaling factors
(but it is used for obtaining weights
if argument weights
is not specified).
a list of class snqProfitEst
containing following objects:
coef |
a list containing the vectors/matrix of the estimated
coefficients: |
ela |
a list of class |
fixEla |
matrix of the fixed factor elasticities at mean prices and mean quantities. |
hessian |
hessian matrix of the profit function with respect to prices evaluated at mean prices. |
convexity |
logical. Convexity of the profit function. |
r2 |
|
est |
estimation results returned by |
weights |
the weights of prices used for normalization. |
normPrice |
vector used for normalization of prices. |
data |
data frame of originally supplied data. |
fitted |
data frame that contains the fitted netput quantities and the fitted profit. |
pMeans |
means of the scaled netput prices. |
qMeans |
means of the scaled netput quantities. |
fMeans |
means of the (quasi-)fixed input quantities. |
priceNames |
a vector of strings containing the names of netput prices. |
quantNames |
a vector of strings containing the names of netput quantities (inputs must be negative). |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fixed inputs. |
instNames |
an optional vector of strings containing the names of instrumental variables (for 3SLS estimation). |
form |
the functional form (see details). |
base |
the base period(s) for scaling prices (see details). |
weights |
vector of weights of the prices for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
method |
the estimation method. |
Arne Henningsen
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
snqProfitEla
and snqProfitWeights
.
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms ) estResult$ela # Oh, that looks bad! # it it reasonable to account for technological progress germanFarms$time <- c( 0:19 ) estResult2 <- snqProfitEst( priceNames, quantNames, c("land","time"), data = germanFarms ) estResult2$ela # Ah, that looks better! # estimation with unscaled prices estResultNoScale <- snqProfitEst( priceNames, quantNames, c("land","time"), data = germanFarms, scalingFactors = rep( 1, 3 ) ) print( estResultNoScale ) # alternative way of estimation with unscaled prices estResultNoScale2 <- snqProfitEst( priceNames, quantNames, c("land","time"), data = germanFarms, base = NULL, weights = snqProfitWeights( priceNames, quantNames, germanFarms ) ) all.equal( estResultNoScale[-20], estResultNoScale2[] ) # please note that the SNQ Profit function is not invariant # to units of measurement so that different scaling factors # result in different estimates of elasticities: all.equal( estResult2$ela, estResultNoScale$ela ) }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms ) estResult$ela # Oh, that looks bad! # it it reasonable to account for technological progress germanFarms$time <- c( 0:19 ) estResult2 <- snqProfitEst( priceNames, quantNames, c("land","time"), data = germanFarms ) estResult2$ela # Ah, that looks better! # estimation with unscaled prices estResultNoScale <- snqProfitEst( priceNames, quantNames, c("land","time"), data = germanFarms, scalingFactors = rep( 1, 3 ) ) print( estResultNoScale ) # alternative way of estimation with unscaled prices estResultNoScale2 <- snqProfitEst( priceNames, quantNames, c("land","time"), data = germanFarms, base = NULL, weights = snqProfitWeights( priceNames, quantNames, germanFarms ) ) all.equal( estResultNoScale[-20], estResultNoScale2[] ) # please note that the SNQ Profit function is not invariant # to units of measurement so that different scaling factors # result in different estimates of elasticities: all.equal( estResult2$ela, estResultNoScale$ela ) }
Calculates the Fixed Factor Elasticities of a Symmetric Normalized Quadratic (SNQ) profit function.
snqProfitFixEla( delta, gamma, quant, fix, weights, scalingFactors = rep( 1, length( weights ) ) )
snqProfitFixEla( delta, gamma, quant, fix, weights, scalingFactors = rep( 1, length( weights ) ) )
delta |
matrix of estimated |
gamma |
matrix of estimated |
quant |
vector of netput quantities at which the elasticities should be calculated. |
fix |
vector of quantities of fixed factors at which the elasticities should be calculated. |
weights |
vector of weights of prices used for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
A fixed factor elasticity is defined as
Thus, e.g. means that if the quantity of fixed factor j
(
) increases by 1%, the quantity of netput i (
) will
increase by 0.5%.
Arne Henningsen
snqProfitEst
and snqProfitEla
.
# just a stupid simple example snqProfitFixEla( matrix(1:6/6,3,2 ), matrix(4:1/4,2 ), c(1,1,1), c(1,1), c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) fixNames <- c( "land", "time" ) estResult <- snqProfitEst( priceNames, quantNames, fixNames, data=germanFarms ) estResult$fixEla # price elasticities at mean quantities of netputs # and fixed factors # fixed factor elasticities at the last observation (1994/95) snqProfitFixEla( estResult$coef$delta, estResult$coef$gamma, estResult$data[ 20, quantNames ], estResult$data[ 20, fixNames ], estResult$weights, estResult$scalingFactors ) }
# just a stupid simple example snqProfitFixEla( matrix(1:6/6,3,2 ), matrix(4:1/4,2 ), c(1,1,1), c(1,1), c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) fixNames <- c( "land", "time" ) estResult <- snqProfitEst( priceNames, quantNames, fixNames, data=germanFarms ) estResult$fixEla # price elasticities at mean quantities of netputs # and fixed factors # fixed factor elasticities at the last observation (1994/95) snqProfitFixEla( estResult$coef$delta, estResult$coef$gamma, estResult$data[ 20, quantNames ], estResult$data[ 20, fixNames ], estResult$weights, estResult$scalingFactors ) }
Returns the Hessian (substitution) matrix of a Symmetric Normalized Quadratic (SNQ) Profit Function.
snqProfitHessian( beta, prices, weights, scalingFactors = rep( 1, length( weights ) ) )
snqProfitHessian( beta, prices, weights, scalingFactors = rep( 1, length( weights ) ) )
beta |
matrix of the |
prices |
vector of netput prices at which the Hessian should be calculated. |
weights |
vector of weights of prices for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
Arne Henningsen
snqProfitEst
, snqProfitEla
and
snqProfitHessianDeriv
.
# just a stupid simple example snqProfitHessian( matrix(101:109,3,3), c(1,1,1), c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) estResult$hessian # the Hessian at mean prices and mean quantities # Hessian at the last observation (1994/95) snqProfitHessian( estResult$coef$beta, estResult$data[ 20, priceNames ], estResult$weights, estResult$scalingFactors ) }
# just a stupid simple example snqProfitHessian( matrix(101:109,3,3), c(1,1,1), c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) estResult$hessian # the Hessian at mean prices and mean quantities # Hessian at the last observation (1994/95) snqProfitHessian( estResult$coef$beta, estResult$data[ 20, priceNames ], estResult$weights, estResult$scalingFactors ) }
Returns the matrix of derivatives of the vector of linear independent values of the Hessian with respect to the vector of the linear independent coefficients.
snqProfitHessianDeriv( prices, weights, nFix = 0, form = 0 )
snqProfitHessianDeriv( prices, weights, nFix = 0, form = 0 )
prices |
vector of netput prices at which the derivatives should be calculated. |
weights |
vector of weights for normalizing prices. |
nFix |
number of (quasi-)fix inputs. |
form |
the functional form to be estimated (see
|
Arne Henningsen
# just a stupid simple example snqProfitHessianDeriv( c(1,2,3),c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) snqProfitHessianDeriv( estResult$pMean, estResult$weights, 2 ) }
# just a stupid simple example snqProfitHessianDeriv( c(1,2,3),c(0.4,0.3,0.3) ) # now with real data if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms ) snqProfitHessianDeriv( estResult$pMean, estResult$weights, 2 ) }
Imposing Convexity on a Symmetric Normalized Quadratic (SNQ) Profit function.
snqProfitImposeConvexity( estResult, rankReduction = 0, start = 10, optimMethod = "BFGS", control = list( maxit=5000 ), stErMethod = "none", nRep = 1000, verbose = 0 )
snqProfitImposeConvexity( estResult, rankReduction = 0, start = 10, optimMethod = "BFGS", control = list( maxit=5000 ), stErMethod = "none", nRep = 1000, verbose = 0 )
estResult |
object returned by |
rankReduction |
an integer specifying the reduction of the rank
of the |
start |
starting values of the triangular Cholesky matrix. |
optimMethod |
method to be used by |
control |
list of control parameters passed to |
stErMethod |
method to compute standard errors, either 'none', 'resample', 'jackknife' or 'coefSim' (see details). |
nRep |
number of replications to compute the standard errors
if |
verbose |
an integer idicating the verbose level. |
The procedure proposed by Koebel, Falk and Laisney (2000, 2003) is
applied to impose convexity in prices on an estimated symmetric
normalized quadratic (SNQ) profit function.
The standard errors of the restricted coefficients can be either
calculated by
bootstrap resampling ('resampling'),
jackknife ('jacknife') or
by simulating the distribution of the unrestricted coefficients
using its variance covariance matrix ('coefSim').
a list of class snqProfitImposeConvexity
containing the same
objects as an object of class snqProfitEst
and additionally the objects:
mindist |
object returned by |
sim |
results of the simulation to obtain the standard errors of the estimated coefficients. |
Arne Henningsen
Koebel, B., M. Falk and F. Laisney (2000), Imposing and Testing Curvature Conditions on a Box-Cox Cost Function. Discussion Paper No. 00-70, ZEW, Mannheim, https://madoc.bib.uni-mannheim.de/515/1/dp0070.pdf.
Koebel, B., M. Falk and F. Laisney (2003), Imposing and Testing Curvature Conditions on a Box-Cox Cost Function. Journal of Business and Economic Statistics, 21, p. 319-335.
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms ) estResult # Note: it is NOT convex in netput prices estResultConvex <- snqProfitImposeConvexity( estResult ) estResultConvex # now it is convex }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms ) estResult # Note: it is NOT convex in netput prices estResultConvex <- snqProfitImposeConvexity( estResult ) estResultConvex # now it is convex }
Calculates the shadow prices of a Symmetric Normalized Quadratic (SNQ) profit function.
snqProfitShadowPrices( priceNames, fixNames, estResult = NULL, data = estResult$data, weights = estResult$weights, scalingFactors = estResult$scalingFactors, coef = estResult$coef, form = estResult$form )
snqProfitShadowPrices( priceNames, fixNames, estResult = NULL, data = estResult$data, weights = estResult$weights, scalingFactors = estResult$scalingFactors, coef = estResult$coef, form = estResult$form )
priceNames |
a vector of strings containing the names of netput prices. |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fix inputs. |
estResult |
object returned by |
data |
a data frame containing the data. |
weights |
vector of weights of prices used for normalization. |
scalingFactors |
factors to scale prices (see details). |
coef |
a list containing the coefficients (at least delta and gamma). |
form |
the functional form to be estimated (see details). |
Arne Henningsen
snqProfitEst
, snqProfitCalc
and
snqProfitEla
.
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) fixNames <- c( "land", "time" ) estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms ) snqProfitShadowPrices( priceNames, fixNames, estResult ) }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor germanFarms$time <- c( 0:19 ) priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) fixNames <- c( "land", "time" ) estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms ) snqProfitShadowPrices( priceNames, fixNames, estResult ) }
Returns a vector of weights to normalize prices on a Symmetric Normalized Quadratic (SNQ) Profit function.
snqProfitWeights( priceNames, quantNames, data, method = "DW92", base = 1 )
snqProfitWeights( priceNames, quantNames, data, method = "DW92", base = 1 )
priceNames |
a vector of strings containing the names of netput prices. |
quantNames |
a vector of strings containing the names of netput quantities. |
data |
a data frame containing the data. |
method |
the method to determine the weights (see details). |
base |
the base period(s) for scaling prices (see details). |
If argument method
is 'DW92' the method of Diewert and
Wales (1992) is applied. They predetermine the weights by
Defining the scaled netput quantities as
we get following formula:
The prices are scaled that they are unity in the base period or - if there
is more than one base period - that the
means of the prices over the base periods are unity.
The argument base
can be either
(a) a single number: the row number of the base prices,
(b) a vector indicating several observations: The means of these
observations are used as base prices,
(c) a logical vector with the same length as the data
: The
means of the observations indicated as 'TRUE' are used as base prices, or
(d) NULL
: prices are not scaled.
Arne Henningsen
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) snqProfitWeights( priceNames, quantNames, germanFarms ) }
if( requireNamespace( 'micEcon', quietly = TRUE ) ) { data( germanFarms, package = "micEcon" ) germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput germanFarms$qLabor <- -germanFarms$qLabor priceNames <- c( "pOutput", "pVarInput", "pLabor" ) quantNames <- c( "qOutput", "qVarInput", "qLabor" ) snqProfitWeights( priceNames, quantNames, germanFarms ) }